skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Perry, Jonathan James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we define and investigate the Fréchet edit distance problem. Here, given two polygonal curves $$\pi$$ and $$\sigma$$ and a threshhold value $$\delta$$ , we seek the minimum number of edits to $$\sigma$$ such that the Fréchet distance between the edited curve and $$\pi$$ is at most $$\delta$$. For the edit operations we consider three cases, namely, deletion of vertices, insertion of vertices, or both. For this basic problem we consider a number of variants. Specifically, we provide polynomial time algorithms for both discrete and continuous Fréchet edit distance variants, as well as hardness results for weak Fréchet edit distance variants. 
    more » « less
  2. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    We define and investigate the Fréchet edit distance problem. Given two polygonal curves π and σ and a non-negative threshhold value δ, we seek the minimum number of edits to σ such that the Fréchet distance between the edited σ and π is at most δ. For the edit operations we consider three cases, namely, deletion of vertices, insertion of vertices, or both. For this basic problem we consider a number of variants. Specifically, we provide polynomial time algorithms for both discrete and continuous Fréchet edit distance variants, as well as hardness results for weak Fréchet edit distance variants. 
    more » « less